第52回真空夏季大学

演習 I, II, III 問題
および解答

重要な定数

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボルツマン定数</td>
<td>k</td>
<td>$1.381 \times 10^{-23} \text{ J K}^{-1}$</td>
</tr>
<tr>
<td>気体定数</td>
<td>R</td>
<td>$8.314 \text{ J mol}^{-1} \text{ K}^{-1}$</td>
</tr>
<tr>
<td>アボガドロ数</td>
<td>N_A</td>
<td>$6.022 \times 10^{23} \text{ 個 mol}^{-1}$</td>
</tr>
</tbody>
</table>
I-1. 压力の単位変換

以下の圧力を Pa 単位で表しなさい。
2.95 mbar, 1.6×10⁻⁸ Torr, 0.21 atm, 5 MPa

1 mbar = 100 Pa, 1 Torr = 133.3 Pa, 1 atm = 1.0133×10⁵ Pa

[解]
- 2.95 mbar = 2.95 mbar × \frac{100 Pa}{1 mbar} = 2.95 × 10² Pa
- 1.6×10⁻⁸ Torr = 1.6×10⁻⁸ Torr × \frac{133.3 Pa}{1 Torr} = 2.1 × 10⁻⁶ Pa
- 0.21 atm = 0.21 atm × \frac{1.0133 × 10⁵ Pa}{1 atm} = 2.1 × 10⁴ Pa
- 5 MPa = 5 × 10⁶ Pa

注：有効数字の桁数を問題に与えられた数値のそれにそろえてある。
I- 2. 平均自由行程

温度 $T=300$ K, 圧力 p が 0.32 Pa と 6.7×10^{-8} Pa の窒素分子の平均自由行程 λ [m] を求めなさい。

平均自由行程

$$\lambda = \frac{1}{\sqrt{2\pi\sigma^2 n}}$$

$p = nkT$, σ [m]: 分子の直径, 窒素分子の直径=0.378 nm.

[解]

$$\lambda = \frac{1}{\sqrt{2\pi\sigma^2 n}} = \frac{kT}{\sqrt{2\pi\sigma^2 p}} = \frac{1.38 \times 10^{-23} \text{JK}^{-1} \times 300 \text{K}}{\sqrt{2\pi} (0.378 \times 10^{-9} \text{m})^2 \times 0.32 \text{Pa}} = 2.0 \times 10^{-2} \text{m}$$

単位を確認すると,

$$\frac{[\text{JK}^{-1}][\text{K}]}{[\text{m}^2][\text{Pa}]} = \frac{[\text{J}]}{[\text{m}^2][\text{Pa}]} = \frac{[\text{kg m}^2 \text{s}^{-2}]}{[\text{m}^2][\text{kg m}^{-1} \text{s}^{-2}]} = [\text{m}]$$

$p = 6.7 \times 10^{-8}$ Pa の時も同様に計算すると, $\lambda = 9.7 \times 10^4$ m.
I- 3. Maxwell-Boltzmann の速さ分布

温度 $T = 300 \text{ K}$ の時の水素分子の最大確率速度 v_p、算術平均速度 \bar{v}、二乗平均速度 $\sqrt{v^2}$ を求めなさい。

気体の速度分布

$v_p = \sqrt{\frac{2kT}{m}}$, $\bar{v} = \sqrt{\frac{8kT}{\pi m}}$, $\sqrt{v^2} = \sqrt{\frac{3kT}{m}}$

m [kg]: 分子 1 個の質量、水素のモル質量は 2.01 g/mol。
mol 質量 = 分子 1 個の質量 × 1 mol の分子数（アボガドロ数）

[解]

- 最大確率速度は、$T = 300 \text{ K}$ のとき,

$$v_p = \sqrt{\frac{2kT}{m}} = \sqrt{\frac{2 \times 1.38 \times 10^{-23} \text{ J K}^{-1} \times 300 \text{ K}}{\frac{2.01 \times 10^{-3} \text{ kg mol}^{-1}}{6.02 \times 10^{23} \text{ mol}^{-1}}}} = 1.57 \times 10^3 \text{ m s}^{-1}$$

である。

- 算術平均速度は、

$$\bar{v} = \sqrt{\frac{8kT}{\pi m}} = 1.78 \times 10^3 \text{ m s}^{-1}.$$

- 二乗平均速度は、

$$\sqrt{\bar{v}^2} = \sqrt{\frac{3kT}{m}} = 1.93 \times 10^3 \text{ m s}^{-1}.$$

I- 4. 流量とコンダクタンス

コンダクタンス \(C = 9.6 \times 10^{-3} \text{ m}^3 \text{ s}^{-1} \) の配管の両端の圧力が、\(p_1 = 3.8 \times 10^{-4} \text{ Pa} \), \(p_2 = 2.5 \times 10^{-5} \text{ Pa} \) の時に配管を通して気体の体積流量 \(Q \) [Pa m³ s⁻¹] を求めなさい。

\[Q = C \Delta p. \]

[解]

\[Q = C (p_1 - p_2) = 9.6 \times 10^{-3} \text{ m}^3 \text{ s}^{-1} (3.8 \times 10^{-4} \text{ Pa} - 2.5 \times 10^{-5} \text{ Pa}) = 3.4 \times 10^{-6} \text{ Pa m}^3 \text{ s}^{-1} \]
I - 5. 実効排気速度

排気速度 $S_0=0.30 \text{ m}^3\text{s}^{-1}$ の真空ポンプが、コンダクタンス $C=2.4 \times 10^{-2} \text{ m}^3\text{s}^{-1}$ の配管を通じて真空容器に接続されている。配管の接続口における実効排気速度 $S^* \left[\text{m}^3\text{s}^{-1} \right]$ を求めなさい。

実効排気速度

$$\frac{1}{S^*} = \frac{1}{S_0} + \frac{1}{C}$$

[解]

$$S^* = \left(\frac{1}{S_0} + \frac{1}{C} \right)^{-1} = \left(\frac{1}{0.30 \text{ m}^3\text{s}^{-1}} + \frac{1}{2.4 \times 10^{-2} \text{ m}^3\text{s}^{-1}} \right)^{-1} = 2.2 \times 10^{-2} \text{ m}^3\text{s}^{-1}$$
I-6. コンダクタンス

以下の2種類の孔の分子流コンダクタンスを、温度 \(T = 300 \) Kの水素と窒素に対してそれぞれ求めてください。

(a) φ60 mmの孔

(b) φ100 mmの孔

孔（開口あるいはオリフィス）のコンダクタンス \(C = \frac{1}{4}\pi A \), \(A \)：孔の面積。

[解]

(a) φ60 mmの孔のH\(_2\)に対するコンダクタンスは、問題 I-3 より 300 KのH\(_2\)では \(\overline{v} = 1.78 \times 10^3 \) m s\(^{-1}\)なので、

\[
C(H_2, 60mm) = \frac{1}{4}\pi A = \frac{1}{4} \times 1.78 \times 10^3 \text{ m s}^{-1} \times \frac{\pi}{4} \times (6 \times 10^{-2} \text{ m})^2 = 1.26 \text{ m}^3 \text{s}^{-1}
\]

300 KのN\(_2\)では \(\overline{v} = 4.76 \times 10^2 \) m s\(^{-1}\)なので、同様に計算すると、

\[
C(N_2, 60mm) = 3.4 \times 10^{-1} \text{ m}^3 \text{s}^{-1}
\]

となる。

(b) φ100 mmの孔の場合も同様に計算して、あるいはそれぞれ、\(\left(\frac{100}{60} \right)^2 = 2.78 \)倍になるので、

\[
C(H_2, 100mm) = 3.5 \text{ m}^3 \text{s}^{-1}
\]

\[
C(N_2, 100mm) = 9.3 \times 10^{-1} \text{ m}^3 \text{s}^{-1}
\]

となる。
I-7. 入射頻度

気体の入射頻度は、

\[\Gamma = \frac{1}{4} \bar{v} \]
と表せる。これを圧力 \(p \), 温度 \(T \), 気体分子の質量 \(m \) を用いて書き換えると次の式になることを示しなさい。

\[\Gamma = \frac{p}{\sqrt{2\pi mkT}} \quad [\text{個} \text{m}^{-2} \text{s}^{-1}] \]

また温度 \(T=298 \text{ K} \), 圧力 \(p = 1.5 \times 10^{-4} \text{ Pa} \) の水 (H₂O) についてその値を求めなさい。

\[\Gamma = \frac{1}{4} \bar{n} \bar{v}, \ p = nkT, \ \bar{v} = \sqrt{\frac{8kT}{\pi m}}, \ 水のmol質量 = 18.0 \text{ g} \text{mol}^{-1}. \]

[解]

\[\Gamma = \frac{1}{4} \bar{n} \bar{v} = \frac{1}{4} \frac{p}{kT} \sqrt{\frac{8kT}{\pi m}} = \frac{p}{\sqrt{2\pi mkT}} \]

\[\Gamma = \frac{1.5 \times 10^{-4} \text{ Pa}}{\sqrt{2\pi \frac{18.0 \times 10^{-3} \text{ kg mol}^{-1}}{6.02 \times 10^{23} \text{ mol}^{-1}} \times 1.38 \times 10^{-23} \text{ J} \text{K}^{-1} \times 298 \text{ K}}} = 5.4 \times 10^{18} \text{ 個} \text{m}^{-2} \text{s}^{-1} \]
I-8. 粘性流と分子流

以下の題目的気体の性質に関して、粘性流領域と分子流領域の特徴を説明しているものをそれぞれについて選びなさい。

(a) 自由行程
 (i) 分子は主に容器壁と衝突
 (ii) 分子は主に空間中の他の分子と衝突
 (iii) 上記の2種類の衝突が同程度に起こる

(b) 導管のコンダクタンス
 (i) 壓力によらず一定
 (ii) 両端の圧力平均に比例
 (iii) 両端の圧力差に比例

(c) 温度が異なる二つの空間の平衡(熱遷移)
 (i) 圧力が等しい \(p_1 = p_2 \)
 (ii) 高温側の圧力 \(p_1 \)の方が低温側の圧力 \(p_2 \)よりも大きい \(p_1 > p_2 \)
 (iii) 高温側の圧力 \(p_1 \)の方が低温側の圧力 \(p_2 \)よりも小さい \(p_1 < p_2 \)

(d) 粘性力
 (i) 壓力によらず一定
 (ii) 壓力に比例
 (iii) 壓力に反比例

(e) 熱流量
 (i) 壓力によらず一定
 (ii) 壓力に比例
 (iii) 壓力に反比例

希薄気体の輸送現象

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘性流</td>
<td>ii</td>
<td>ii</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>分子流</td>
<td>i</td>
<td>i</td>
<td>ii</td>
<td>ii</td>
<td>i</td>
</tr>
</tbody>
</table>

(b) テキスト 2012 年版の C-12, 13, 15 参照。
(c) A-12, 13 参照。
(d) (e) A-31 参照。粘性力と粘性率、熱流量と熱伝導率の違いに注意。
II-1. 電離真空計の原理

感度係数 $S = 0.15 \text{ Pa}^{-1}$ の電離真空計を電子電流 $I_e = 5.0 \text{ mA}$ で使用し、イオン電流 I_i が 360 pA と測定された。圧力 $p \text{ [Pa]}$ を求めなさい。

電離現象を利用する真空計

$I_i = S p I_e$

\[p = \frac{I_i}{S I_e} = \frac{360 \times 10^{-12} \text{ A}}{0.15 \text{ Pa}^{-1} \times 5.0 \times 10^{-3} \text{ A}} = 4.8 \times 10^{-7} \text{ Pa} \]

テキスト 2012 年版の D-20 参照。
II - 2. 比感度係数

窒素で目盛り付けを行った電離真空計でアルゴンの圧力を測定したところ、値が 5.6×10^{-6} Pa を示した。アルゴンの真の圧力はいくらか。ただし、アルゴンの窒素に対する比感度係数を 1.27 とする。

気体の種類による感度の違い

$$p_x S_x = p_{N2eq} S_{N2} \quad \frac{S_x}{S_{N2}} : \text{比感度係数}$$

[解]
テキスト 2012 年版の D-32 参照,

p_{N2eq} は窒素換算値

$$p_{Ar} = p_{N2eq} \frac{S_{N2}}{S_{Ar}} = 5.6 \times 10^{-6} \text{ Pa} \times \frac{1}{1.27} = 4.4 \times 10^{-6} \text{ Pa}$$

注、窒素を測定しているときの電流計の読みは、

$$I_i = S_{N2} I_e p_{N2}$$

で、ここから窒素の圧力が

$$p_{N2} = \frac{I_i}{S_{N2} I_e}$$

と得られる。一方、同じ電離真空計で、気体 x を測定しているときの電流計の読みは,

$$I_i(x) = S_x I_e p_x$$

この読み値を「窒素だと思って」換算するので、気体 x の圧力の窒素換算値 p_{N2eq} は,

$$p_{N2eq} = \frac{I_i(x)}{S_{N2} I_e} = \frac{S_x I_e p_x}{S_{N2} I_e} = p_x \frac{S_x}{S_{N2}}$$

となる。従って,

$$p_x S_x = p_{N2eq} S_{N2}.$$
II - 3. 吸着平衡に関する問題

温度 $T = 300$ K において窒素分子が金属表面上で吸着平衡にあるとき，吸着量 σ [個m^{-2}] を求めてみよう，ただし窒素気体の圧力 $p = 2.0 \times 10^{-7}$ Pa，$\tau_0 = 1.0 \times 10^{-13}$ s，脱離の活性化エネルギー $E_d = 5.6 \text{kJmol}^{-1}$，吸着確率（凝縮係数） $c = 0.65$ とする。

[解]
テキスト 2012 年版の B-25 参照。

Henry 則のもとで吸着平衡にあると考えると，吸着量 σ は

$$\sigma = \frac{1}{4} n \bar{v} c \tau$$

である。右辺の各量を求めると

$$\tau = \tau_0 \exp \left(\frac{E_d}{RT} \right) = 1.0 \times 10^{-13} \text{s} \exp \left(\frac{5600 \text{Jmol}^{-1}}{8.314 \text{JK}^{-1}\text{mol}^{-1} \times 300 \text{K}} \right) = 9.44 \times 10^{-13} \text{s}$$

$$\frac{1}{4} n \bar{v} = \frac{p}{\sqrt{2 \pi m k T}} = \frac{2.0 \times 10^{-7} \text{Pa}}{\sqrt{2 \pi \times \frac{28.01 \times 10^{-3} \text{kgmol}^{-1}}{6.022 \times 10^{23} \text{mol}^{-1}} \times 1.381 \times 10^{-23} \text{JK}^{-1} \times 300 \text{K}}}$$

$$= 5.75 \times 10^{15} \text{個m}^{-2} \text{s}^{-1}$$

よって

$$\sigma = 5.75 \times 10^{15} \text{個m}^{-2} \text{s}^{-1} \times 0.65 \times 9.44 \times 10^{-13} \text{s} = 3.53 \times 10^{3} \text{個 m}^{-2}$$
II-4. ラングミュア型吸着平衡に関する問題

窒素分子が解離せずに化学吸着し、その単分子層吸着量が \(\sigma_0 = 1 \times 10^{19} \) 個 \(\text{m}^{-2} \) の表面がある。温度 \(T = 300 \) K のもので、窒素圧力 \(7 \times 10^{-5} \) Pa の気相と 0.6 単分子層の吸着相が平衡状態になった。吸着がラングミュア型であるとき、窒素分子の平均滞在時間を求めよ。空気に入射した分子の付着確率は \(s = 1 \) とする。

[解]
テキスト 2012 年版 B-26 参照。

吸着量を \(\sigma \)、被覆率を \(\theta = \frac{\sigma}{\sigma_0} \) すると、ラングミュア型の吸着では吸着平衡時には

\[
\frac{\theta}{1 - \theta} = \frac{1}{4} n \tilde{v} s \tau \frac{1}{\sigma_0}
\]

が成立している。温度 300K、圧力 7 \(\times 10^{-5} \) Pa における窒素分子の入射頻度は

\[
\Gamma = \frac{1}{4} n \tilde{v} = \frac{7 \times 10^{-5} \text{ Pa}}{\sqrt{2\pi \times 28.01 \times 10^{-3} \text{ kgmol}^{-1} \times 6.022 \times 10^{23} \text{ mol}^{-1} \times 1.381 \times 10^{-23} \text{ JK}^{-1} \times 300 \text{ K}}}
\]

\[
= 2.0 \times 10^{18} \text{ 個} \text{m}^{-2} \text{s}^{-1}
\]

したがって

\[
\tau = \frac{\theta}{1 - \theta} \frac{1}{4} n \tilde{v} s = \frac{0.6}{0.4} \times \frac{1 \times 10^{19} \text{ 個} \text{m}^{-2}}{2.0 \times 10^{18} \text{ 個} \text{m}^{-2} \text{s}^{-1} \times 1} = 7.5 \text{ s}
\]
II-5. 真空排気の基礎

[解]
テキスト 2012 年版 C-30 参照。

真空容器内面の表面積 $A \ [m^2]$ は,

$$A = 0.3 \times 0.3 \times 6 = 0.54 \ m^2$$

内表面からガス放出量 $Q \ [Pa \ m^3 \ s^{-1}]$ は

$$Q = q \times A = 2.0 \times 10^{-9} \ Pa \ m^3 \ s^{-1} \ m^{-2} \times 0.54 \ m^2 = 1.08 \times 10^{-9} \ Pa \ m^3 \ s^{-1}$$

排気量＝ガス放出量より $pS = Q$ なので,

$$p = \frac{Q}{S} = \frac{1.08 \times 10^{-9} \ Pa \ m^3 \ s^{-1}}{0.2 \ m^3 \ s^{-1}} = 5.4 \times 10^{-9} \ Pa$$
II - 6. 気体分子数に関する問題

窒素でバージョン、排気を開始した球形真空容器がある。真空容器の空間に存在する窒素分子数 \(N_V \) に対する容器内表面に単分子層として吸着している分子数 \(N_{\text{ML}} \) の比率を、圧力が 100 Pa, 10^{-1} Pa, 10^{-5} Pa および 10^{-10} Pa である場合について調べてみよう。ただし、容器の内直径は 300 mm、容器温度は 23℃、窒素の単分子吸着層の形成に必要な分子数は \(8 \times 10^{14} \) 個 cm^{-2} とする。

[解]
テキスト 2012 年版 B-3 参照。

容積 \(V \) 中の温度 \(T \) の気体分子の数 \(N_V \) は圧力を \(p \) とすると

\[
N_V = \frac{pV}{kT}
\]

表面積 \(A \) に形成された単分子層に含まれる分子の総数 \(N_{\text{ML}} \) は単位面積あたりの分子数を \(n_m \) として

\[
N_{\text{ML}} = n_m A
\]

したがって、両者の比は単位に注意して計算すると、

\[
\frac{N_{\text{ML}}}{N_V} = \frac{n_m kT}{pV} = \frac{8.0 \times 10^{18} \text{ 個 m}^{-2} \times 4\pi(0.3)^2 \text{ m}^2 \times 1.381 \times 10^{-23} \text{ JK}^{-1} \times 296 \text{ K}}{p \text{ [Pa]} \times \frac{4}{5}\pi(0.3)^3 \text{ m}^3} = 0.65 \text{ Pa} \times \\
\]

よって、それぞれの圧力では

<table>
<thead>
<tr>
<th>圧力 [Pa]</th>
<th>100</th>
<th>0.1</th>
<th>10^{-5}</th>
<th>10^{-10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>比率</td>
<td>6.5 × 10^{-3}</td>
<td>6.5</td>
<td>6.5 × 10^4</td>
<td>6.5 × 10^9</td>
</tr>
</tbody>
</table>

すなわち、圧力が低くなると気体分子はほとんど容器表面に吸着していることを示している。
II-7. 分圧計と全圧計

高真空ボンプで排気されている真空容器内の圧力を電離真空計と分圧真空計（四極子形質量分析計）で同時に測定した。電離真空計の指示値と質量スペクトルが（a）、（b）、（c）、（d）の場合、それぞれの真の真空容器内の圧力はいくつか。ただし、電離真空計の比感度係数は、窒素 1.0, アルゴン 1.4, 水素 0.4, ヘリウム 0.2, 一酸化炭素 1.1 とする。ヒント：（c）においては、（a）と（b）の結果を用いること。

(a) 電離真空計の指示値 = 3.00 × 10⁻⁴ Pa

(b) 電離真空計の指示値 = 3.00 × 10⁻⁴ Pa

(c) 電離真空計の指示値 = 2.50 × 10⁻⁴ Pa

(d) 電離真空計の指示値 = 3.00 × 10⁻⁴ Pa

[解]
テキスト2012年版D-30の表4を参考にして、主成分となっている気体種を考える。

(a) マススペクトルより真空容器内の気体の主成分は Ar と判断。
\[p(\text{Ar}) = \frac{3.00 \times 10^{-4} \text{Pa}}{1.4} = 2.14 \times 10^{-4} \text{Pa} \]

(b) マススペクトルより主成分は H₂ と判断。
\[p(\text{H₂}) = \frac{3.00 \times 10^{-4} \text{Pa}}{0.4} = 7.50 \times 10^{-4} \text{Pa} \]

(c) マススペクトルより主成分は H₂ と Ar と判断。 (a) と (b) の結果から、質量分析計のそれぞれの気体に対する感度 S を求める。
次に、マススペクトルの信号強度から Ar と H₂ の分圧を求めめる。

\[
p(\text{Ar}) = \frac{1.00 \times 10^{-9} \text{ A}}{9.33 \times 10^{-6} \text{ A Pa}^{-1}} = 1.07 \times 10^{-4} \text{ Pa}
\]

\[
p(\text{H₂}) = \frac{1.00 \times 10^{-9} \text{ A}}{4.00 \times 10^{-6} \text{ A Pa}^{-1}} = 2.50 \times 10^{-4} \text{ Pa}
\]

あるいは、それぞれのピークの高さを比較して、Ar の分圧は (a) の 1/2, H₂ の分圧は (b) の 1/3 として計算しても良い。

真空の全圧はこれらの合計なので 3.57 \times 10^{-4} \text{ Pa}。

また電離真空計の指示値が合っているか、室素換算値に直して検算する。

\[
p(\text{N₂ eq}) = p(\text{Ar}) \times 1.4 + p(\text{H₂}) \times 0.4 = 1.07 \times 10^{-4} \text{ Pa} \times 1.4 + 2.50 \times 10^{-4} \text{ Pa} \times 0.4 = 2.50 \times 10^{-4} \text{ Pa}
\]

(d) マススペクトルには \(m/z = 12, 16 \) が多く、14 が出ていないので N₂ ではなく CO が主成分と判断。

\[
p(\text{CO}) = \frac{3.00 \times 10^{-4} \text{ Pa}}{1.1} = 2.73 \times 10^{-4} \text{ Pa}
\]
II-8. 壁面における分子の散乱

表面に入射する気体分子が余弦則に従って散乱されるとき、散乱角 θ （表面法線からの角度）が α 以内となる確率 $P(\alpha)$ を求める。

\[P(\alpha) = \frac{\int_0^\alpha \sin \theta \cos \theta d\theta \int_0^{2\pi} d\phi}{\int_0^{\pi/2} \sin \theta \cos \theta d\theta \int_0^{2\pi} d\phi} = \frac{\left[\frac{1}{2} \sin^2 \theta \right]_0^\alpha}{\left[\frac{1}{2} \sin^2 \theta \right]_{\pi/2}^{\pi/2}} = \sin^2 \alpha \]

（補足）これをグラフに描くと下図のようになり、例えば、$P(30^\circ) = 0.25$, $P(45^\circ) = 0.5$, $P(60^\circ) = 0.75$, $P(90^\circ) = 1$ となる。

[解]
テキスト2012年版 A-11, 34, B-8, F-3参照。
散乱角を θ, 方位角を ϕ とする。ある散乱範囲における散乱強度は、微小立体角 $d\omega = \sin \theta d\theta d\phi$ に余弦則による散乱強度の重み $\cos \theta$ をかけてその範囲で積分したものに比例する。したがって、求める散乱確率は、全体の散乱範囲（散乱角 θ が0から $\pi/2$）に対する、散乱角 θ が0から α までの範囲の比である。

\[P(\alpha) = \frac{\int_0^\alpha \sin \theta \cos \theta d\theta \int_0^{2\pi} d\phi}{\int_0^{\pi/2} \sin \theta \cos \theta d\theta \int_0^{2\pi} d\phi} = \frac{\left[\frac{1}{2} \sin^2 \theta \right]_0^\alpha}{\left[\frac{1}{2} \sin^2 \theta \right]_{\pi/2}^{\pi/2}} = \sin^2 \alpha \]

（補足）これをグラフに描くと下図のようになり、例えば、$P(30^\circ) = 0.25$, $P(45^\circ) = 0.5$, $P(60^\circ) = 0.75$, $P(90^\circ) = 1$ となる。
III-1. コンダクタンスに関する問題

図に示すような円形導管の入口に直径 D_1 の穴のあいたフランジを接続したガス流路がある。円形導管の直径及び長さを D_2, L とするとき ($D_1 < D_2$), このガス流路の 20 $^\circ$C の空気に対する分子流領域でのコンダクタンスを考える。

(a) 温度 20 $^\circ$C の空気の平均分子速度 \bar{v} を求め、長さの単位を m で計算する時の D_1 の孔のコンダクタンス C_1 と、直径 D_2、長さ L の円形導管のコンダクタンス C_L の表式を導け。
(b) 圓の左から右に気体が流れるものとして、このガス流路のコンダクタンスを C_1 と C_L の直列接続で表せ。
(c) 気体の流れが左から右に流れるものとしたときのガス流路のコンダクタンスは、D_2 の孔のコンダクタンス C_2、円形導管のコンダクタンス C_L および直径 D_2 から直径 D_1 に狭まる部分のコンダクタンス C_{2-1} の直列接続で求め、この値は (b) で求めたコンダクタンスと等しくならなければならない。これより C_{2-1} を求めよ。

[解]
テキスト 2012 年版 C-25 参照。

(a) テキスト 2012 年版 A-13 の表より空気の平均モル質量を 29 g mol$^{-1}$ とすると、演習 I-3 と同様に計算して、平均分子速度 $\bar{v} = 4.6 \times 10^2$ m s$^{-1}$ が得られる。
孔とパイプのコンダクタンスをそれぞれ、C_1, C_L とすると,

$$C_1 = \frac{1}{4} \bar{v} A_1 = 116 \left(\frac{\pi}{4} D_1^2 \right) = 91 D_1^2 \ [m^3 s^{-1}], \quad C_L = 121 \frac{D_2^3}{L} \ [m^3 s^{-1}]$$

(b) 直列合成コンダクタンスを C とすると

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_L} = \frac{1}{91 D_1^2} + \frac{L}{121 D_2^3} \quad \quad \quad (1)$$

(c) 右から左の時 D_2 の部分のコンダクタンスを C_2, D_2 から D_1 に狭くなる部分のコンダクタンスを C_{2-1} とすると

$$\frac{1}{C} = \frac{1}{C_2} + \frac{1}{C_L} + \frac{1}{C_{2-1}} \quad \quad \quad (2)$$

また

$$C_2 = \frac{1}{4} \bar{v} A_2 = 116 \left(\frac{\pi}{4} D_2^2 \right) = 91 D_2^2 \quad \quad \quad (3)$$
(1), (2), (3) 式より \[
\frac{1}{C_{2-1}} = \frac{1}{91} \left(\frac{1}{D_1^2} - \frac{1}{D_2^2} \right) \therefore C_{2-1} = \frac{91D_1^2}{1 - \left(\frac{D_1}{D_2} \right)^2}
\]

これはまた \[
C_{2-1} = \frac{1}{4} \bar{v} A_1 \frac{1}{1 - \frac{A_1}{A_2}}
\] とも表わされる。
III - 2. 吸着平衡への過渡過程

一定の温度 T と圧力 p_0 の下で吸着分子密度 σ_0 で平衡状態にある吸着系がある。ここで圧力が急激に p_1 に変化すると、吸着系の吸着分子密度 $\sigma = \sigma(t)$ は、新しい圧力での平衡吸着分子密度 σ_1 に向かって徐々に変化していく。この変化の様子は時間 t に対して指数関数的である。この変化の速さを表す時定数は何で決まるだろうか？

(1) 気体分子の入射頻度 I だろうか、脱着の時定数 τ だろうか？以下の簡単なモデルで考察せよ。温度 T は一定、脱着の時定数 τ は吸着密度によらず一定。気体分子の凝縮係数 α も吸着密度によらず一定とする。また、時刻 $t \leq 0$ で、$p_0 = 0, \sigma_0 = 0$ とする。

(a) 時刻 $t > 0$ で、圧力を $p_1 > 0$ の一定値に保った。このときの I と p_1 の関係を表せ。

(b) 充分時間が経過した後の平衡状態での吸着分子密度 σ_1 を α, I, τ で表せ。

(c) 吸着分子密度が変化していく過渡的な状態では、「吸着分子密度の時間変化」を「単位時間に入射して吸着する分子の数」を「単位時間で脱離する分子の数」と表せ。この式（微分方程式）を書き表せ。

(d) 上記の微分方程式を解き、横軸 t に対して縦軸 $\sigma(t)$ のグラフにせよ。

(e) σ の時間変化を表すグラフの傾きは何で決まっているか考察せよ。

[解]

(a) $I = \frac{p_1}{\sqrt{2\pi m k T}}$ （演習 I-7 参照）

(b) 吸着 (αI) と脱着 (σ_1/τ) が平衡状態にあるので、$\sigma_1 = \alpha I \tau$

(c) $\frac{d\sigma}{dt} = \alpha I - \frac{\sigma}{\tau}$

(d) テキストの L-15 「1 階の線形常微分方程式 (2)」を参照のこと。

$x = \sigma - \alpha I \tau$ と置いて解くと、$\sigma = C \exp \left(-\frac{t}{\tau} \right) + \alpha I \tau$ となる。C は定数で、$t = 0$ で $\sigma = 0$ という初期条件から $C = -\alpha I \tau$ で、結局、$\sigma(t) = \alpha I \tau \left[1 - \exp \left(-\frac{t}{\tau} \right) \right] = \sigma_1 \left[1 - \exp \left(-\frac{t}{\tau} \right) \right]$ となる。グラフは以下の様になる。

(e) 時定数 τ で決まる傾きで σ_1 に近づいていく。
III-3. 電離真空計の感度

簡単なモデルで電離真空計の感度を考察しよう。陰極（フィラメント）から発生した電子が陽極（グリッド）に入るまです、陰極に飛来する平均距離を \(L \) とする。電子が気体分子に衝突してできたイオンが集イオン電極に捕集される効率を \(\beta \) とする。気体の密度を \(n \) 、気体分子のイオン化断面積を \(\sigma \) とする。

(a) 1 個の電子が陰極から陽極まで飛ぶ間に作るイオンの数を \(n, \sigma, L \) で表せ。

(b) 電子電流を \(I_e \) 、イオン電流を \(I_i \) とすると、每秒放出される電子の数、生成するイオンの数はいくらか。素電荷を \(e \) とし、イオンは 1 個だけを考えれば良い。

(c) (a) の結果を用いて \(I_i \) と \(I_e \) の関係を示せ。

(d) 電離真空計の感度を \(S \) とすると、\(I_i = SI_e \beta \) と表せる。(c)の結果と比較して、\(S \) を表せ。気体の温度を \(T \) 、ボルツマン定数を \(k \) とする。

(e) \(\sigma = 3.2 \times 10^{-20} \text{ m}^2 \)（これは電子エネルギー 150 eV の時の窒素分子のイオン化断面積に相当する）、\(L = 1 \text{ cm} \)、\(T = 300 \text{ K} \) 、\(\beta = 1 \) の時の感度 \(S \) を計算せよ。

[解]

テスト 2012 年版 A-10, D-19～21 参照。A-10 では \(\sigma \) が半径の記号として使われているので注意のこと。

(a) 断面積 \(\sigma \)、長さ \(L \) の円柱の中に入れる分子が電子と衝突してイオンになるので、生成されるイオンの数は \(n \sigma L \)。

(b) 電子の数は \(\frac{I_e}{e} \)。生成されたイオンの内 \(\beta \) だけが捕まえられてイオン電流として計測されるので、生成されたイオンの数は \(\frac{I_i}{e \beta} \)。

(c) 電子との衝突によって作られるイオンの数は \(n \sigma L e \) で、このうち \(\beta \) がイオン電流として測定されるので、\(I_i = \frac{n \sigma L e \beta e}{e} = n \sigma L \beta I_e \)となる。

(d) 前式を \(n = \frac{p}{kT} \) で書き換えて、\(I_i = SI_e \beta \) と比較すると、\(S = \frac{\sigma L \beta}{kT} \) となる。

(e) 数値を代入して計算すると,

\[
S = \frac{3.2 \times 10^{-20} \text{ m}^2 \times 1 \times 10^{-2} \text{ m} \times 1}{1.38 \times 10^{-23} \text{ J K}^{-1} \times 300 \text{ K}} = 7.7 \times 10^{-2} \text{ Pa}^{-1}
\]

D-20 にある実際の \(S \) の値と比較せよ。
III-4. 気体放出速度の測定

図のような測定系で真空容器 α の内壁のガス放出速度 $q_α$ を以下的手順で測定した。
(i) バルブ1を開じバルブ2を開けて、真空計1と真空計2で圧力を測定。
(ii) バルブ1を開けてバルブ2を閉じて、真空計1と真空計2で圧力を測定。

(a) (i), (ii) における真空計 1 の値をそれぞれ p_1, p_1' とし、ガス放出速度 $q_α$ を p_1, p_1' を用いて表せ。ただしご真空容器間の配管とバルブからのガス放出はないものとし、各真空容器のガス放出量は一定であるとする。

(b) 通常のスループット法と比較して、この方法の優位な点を述べよ。

[図]

真空容器α
ガス放出速度 $q_α$
内表面積 $A_α$

バルブ1

真空容器1
ガス放出量 Q_1
(真空計1からのガス放出を含む)

コンダクタンス C

真空容器2
ガス放出量 Q_2
(真空計2からのガス放出を含む)

真空ポンプ
排気速度 S

バルブ2

真空計1
真空計2

[解]

(a) (i) における真空計 2 の値を p_2 とすると、

$$Q_1 = C(p_1 - p_2) \quad (1)$$

また (ii) における真空計 2 の値を p_2' とすると、

$$q_αA_α + Q_1 = C(p_1' - p_2') \quad (2)$$

(1) 式と (2) 式の差をとると Q_1 が消えて、

$$q_αA_α = C(p_1' - p_2' - p_1 + p_2) \quad (3)$$

一方、どちらのバルブを開けた場合でも、$q_αA_α + Q_1 + Q_2 = p_2S = p_2'S$ なので、$p_2 = p_2'$ となり (3) 式は、

$$q_αA_α = C(p_1' - p_1)$$

となり、

$$q_α = \frac{C(p_1' - p_1)}{A_α} \quad (4)$$
が得られる。

(b) (4) 式の \(p'_1 = p_1 \) より、真空計の軟 X 線効果やガス放出の影響をキャンセルすることができる。また、真空計 2 が必要なく真空計 1 だけで測定ができるため、2 台の真空計の校正誤差や測定限界の違いによる測定誤差が生じない。このため、通常のスループット法よりも小さなガス放出速度測定が可能である。