第54回真空夏季大学

演習Ⅰ，Ⅱ，Ⅲ
問題＆解答

<table>
<thead>
<tr>
<th>重要な定数</th>
<th>記号</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボルツマン定数</td>
<td>k</td>
<td>$1.381 \times 10^{-23} \text{ J K}^{-1}$</td>
</tr>
<tr>
<td>気体定数</td>
<td>R</td>
<td>$8.314 \text{ J mol}^{-1} \text{ K}^{-1}$</td>
</tr>
<tr>
<td>アボガドロ数</td>
<td>N_A</td>
<td>6.022×10^{23} 個 mol$^{-1}$</td>
</tr>
</tbody>
</table>

2014年
日本真空学会
I-1. 気体の質量：基礎講座「気体分子運動論の基礎」問題2

1気圧0℃の空気1m³の質量はいくらか、空気のmol質量を29g·mol⁻¹とする。

【解】

1気圧0℃で1molの気体の体積は22.4Lなので、

\[\frac{1 \text{m}^3}{22.4 \text{L} \cdot \text{mol}^{-1}} \times 29 \text{g} \cdot \text{mol}^{-1} = 1.3 \text{kg} \]

または、\(pV = \nu RT \)より、

\[\nu \times 29 \text{g} \cdot \text{mol}^{-1} = \frac{pV}{RT} \times 29 \text{g} \cdot \text{mol}^{-1} = \frac{1.013 \times 10^5 \text{Pa} \times 1 \text{m}^3}{8.314 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \times 273 \text{K}} \times 29 \text{g} \cdot \text{mol}^{-1} = 1.3 \text{kg} \]

I-2. 気体分子の速度：基礎講座「気体分子運動論の基礎」問題4

300Kにおける窒素気体分子および水素気体分子の平均速度を求めよ。

【解】

窒素のmol質量を28g·mol⁻¹として、窒素分子の質量\(m_{N_2} \)は、

\[m_{N_2} = \frac{28 \text{g} \cdot \text{mol}^{-1}}{6.02 \times 10^{23} \text{mol}^{-1}} = 4.65 \times 10^{-26} \text{kg} \]

なので、

\[\bar{v}_{N_2} = \sqrt{\frac{8kT}{\pi m_{N_2}}} = \sqrt{\frac{8 \times 1.38 \times 10^{-23} \text{J} \cdot \text{K}^{-1} \times 300 \text{K}}{\pi \times 4.65 \times 10^{-26} \text{kg}}} = 4.76 \times 10^2 \text{m} \cdot \text{s}^{-1} \]

同様に、水素については

\[\bar{v}_{H_2} = \sqrt{\frac{8RT}{\pi M_{H_2}}} = \sqrt{\frac{8 \times 8.314 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times 300 \text{K}}{\pi \times 2.02 \times 10^{-3} \text{kg} \cdot \text{mol}^{-1}}} = 1.77 \times 10^3 \text{m} \cdot \text{s}^{-1} \]

I-3. 体積入射頻度：基礎講座「気体分子運動論の基礎」問題5

25℃の窒素の体積入射頻度を求めよ。

【解】

窒素分子の質量\(m \)は、

\[m = \frac{28.0 \text{g} \cdot \text{mol}^{-1}}{6.02 \times 10^{23} \text{mol}^{-1}} = 4.65 \times 10^{-26} \text{kg} \]

であるから、

\[f_V = \frac{1}{4} \bar{v} = \sqrt{\frac{kT}{2\pi m}} = \sqrt{\frac{1.38 \times 10^{-23} \text{J} \cdot \text{K}^{-1} \times 298 \text{K}}{2 \times \pi \times 4.65 \times 10^{-26} \text{kg}}} = 1.19 \times 10^2 \text{m}^3 \cdot \text{s}^{-1} \cdot \text{m}^{-2} \]
あるいは、

\[I_V = \frac{1}{4} \bar{v} = \sqrt{\frac{RT}{2\pi M}} = \sqrt{\frac{8.314 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times 298 \text{K}}{2 \times \pi \times 28.0 \times 10^{-3} \text{kg} \cdot \text{mol}^{-1}}} \]

I - 4. 平均自由行程：基礎講座「気体分子運動論の基礎」問題 6

25℃の空気の平均自由行程が次の寸法よりも小さくなる圧力をそれぞれ求めてよ。

(a) 研究用の真空容器の代表的な直径 30 cm
(b) ガス導入に用いるステンレススチール配管の内径 3 mm
(c) 真空フランジのシール部に発生する漏れ傷の幅の想定値 3 μm
(d) ハードディスクのヘッドとディスク距離の典型値 30 nm

【解】

25℃の空気の圧力 \(p \) での平均自由行程 \(\lambda \) は、

\[\lambda = \frac{6.6 \text{mm} \cdot \text{Pa}}{p} \]

なので、平均自由行程がそれぞれの寸法 \(D \) より小さくなる圧力 \(p \) は、一般に、

\[\lambda = \frac{6.6 \text{mm} \cdot \text{Pa}}{p} < d \iff \frac{6.6 \text{mm} \cdot \text{Pa}}{d} < p \]

と求められる。よって、それぞれの \(D \) に対して、

(a) \(p > 2.2 \times 10^{-2} \text{Pa} \)
(b) \(p > 2.2 \text{Pa} \)
(c) \(p > 2.2 \times 10^{3} \text{Pa} \)
(d) \(p > 2.2 \times 10^{5} \text{Pa} \)

I - 5. 気体分子数：真空基礎講座「真空と表面」問題 1

内容積 \(V = 0.20 \text{m}^3 \) の真空容器内の圧力が \(p = 1.0 \times 10^{-4} \text{Pa} \)，温度 \(T = 300 \text{K} \) としよう。容器内の空間にいる気体分子の数 \(N_V \) を求めよ。

【解】

\[N_V = \frac{pV}{kT} = \frac{1 \times 10^{-4} \text{Pa} \times 0.2 \text{m}^3}{1.38 \times 10^{-23} \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \times 300 \text{K}} = 4.8 \times 10^{15} \text{個} \]

ボルツマン定数 \(k \) の単位は原子・分子 1 個当たりであることから厳密には、「J・mol^{-1}・K^{-1}」であるが、通常「個」だけを省略して表記する。この問題では、「個」という単位がどこから生ずるかを明らかにするため、元の詳しい単位表記をした。
I-6 吸着分子数：真空基礎講座「真空と表面」問題 2

内表面積 $A = 1\ m^2$ の真空容器の内表面に気体分子が一分子層の厚さで付いているとする。分子の大きさを 0.32 nm として、分子は規則正しく密接して正方格子状に吸着しているとする。容器表面に存在する分子の数 N_S を求めよ。

【解】
気体分子 1 個当たりが表面上に占める面積は、一边 a の正方格子状に並んでいる場合、図のように a^2 であるから、

$$N_S = \frac{1\ m^2}{(0.32\ nm)^2}\ \text{個}^{-1} = 9.8 \times 10^{18}\ \text{個}$$

I-7 熱的適応係数：真空基礎講座「真空と表面」問題 3, 4

(a) 温度 $T_i = 500\ K$ の気体が、温度 $T_s = 300\ K$ の固体表面に入射した。すると、散乱後のアルゴンの温度 T_i は 330 K になった。次に、入射する気体をヘリウムに変えて、同様の実験を行ったところ、散乱後のヘリウムの温度 T_i は 420 K になった。それぞれの熱的適応係数 α を求めよ。

(b) α が前問で求めた値のとき、入射分子の温度がそのまままで、表面の温度を 700 K に変化させた、T_i を求めよ。

【解】

(a) $\alpha = \frac{T_i - T_i}{T_s - T_i}$ であるから、

アルゴンの時は $\alpha = \frac{330K - 500K}{300K - 500K} = 0.85$

ヘリウムの時は $\alpha = \frac{420K - 500K}{300K - 500K} = 0.40$

(b) 式を変形すると、$T_i = \alpha(T_s - T_i) + T_i$ となるので、

アルゴンの時は $T_i = 0.85(700K - 500K) + 500K = 670K$

ヘリウムの時は $T_i = 0.40(700K - 500K) + 500K = 580K$
I - 8. 実効排気速度：真空基礎講座「排気と真空ポンプ」問題 2
真空容器に、コンダクタンス $C = 0.05 \text{ m}^3 \cdot \text{s}^{-1}$ の配管を介して、排気速度 $S = 0.5 \text{ m}^3 \cdot \text{s}^{-1}$ の真空ポンプを取り付けたときの、真空容器に対する実効排気速度 S_{eff} を求めよ。

【解】

$$S_{\text{eff}} = \frac{SC}{S + C} = \frac{0.5 \text{ m}^3 \cdot \text{s}^{-1} \times 0.05 \text{ m}^3 \cdot \text{s}^{-1}}{0.5 \text{ m}^3 \cdot \text{s}^{-1} + 0.05 \text{ m}^3 \cdot \text{s}^{-1}} = 0.045 \text{ m}^3 \cdot \text{s}^{-1}$$

I - 9. コンダクタンスの合成：真空基礎講座「排気と真空ポンプ」問題 3
コンダクタンスが $C_1 = 0.2 \text{ m}^3 \cdot \text{s}^{-1}$ の配管と $C_2 = 0.01 \text{ m}^3 \cdot \text{s}^{-1}$ の配管を、直列に接続したときと、並列に接続したときの合成コンダクタンスをそれぞれ求めよ。

【解】

直列接続のとき

$$C = \frac{C_1 C_2}{C_1 + C_2} = \frac{0.2 \text{ m}^3 \cdot \text{s}^{-1} \times 0.01 \text{ m}^3 \cdot \text{s}^{-1}}{0.2 \text{ m}^3 \cdot \text{s}^{-1} + 0.01 \text{ m}^3 \cdot \text{s}^{-1}} = 0.0095 \text{ m}^3 \cdot \text{s}^{-1}$$

並列接続のとき

$$C = C_1 + C_2 = 0.2 \text{ m}^3 \cdot \text{s}^{-1} + 0.01 \text{ m}^3 \cdot \text{s}^{-1} = 0.21 \text{ m}^3 \cdot \text{s}^{-1}$$
II - 1. 隔膜真空計とピラニ真空計

真空容器に隔膜真空計とピラニー真空計を取付け、値を比較した。以下の問いに答えなさい。

（a）表の空欄にあてはまる圧力値を次の（1）～（8）から選びなさい。

(1) 0 Pa (2) 8 Pa (3) 10 Pa (4) 50 Pa (5) 1 kPa (6) 10 kPa (7) 30 kPa (8) Over range

<table>
<thead>
<tr>
<th>気体種</th>
<th>隔膜真空計の指示値</th>
<th>ピラニー真空計の指示値</th>
</tr>
</thead>
<tbody>
<tr>
<td>窒素</td>
<td>10 Pa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 kPa</td>
<td></td>
</tr>
<tr>
<td>空気</td>
<td>10 Pa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 kPa</td>
<td></td>
</tr>
<tr>
<td>アルゴン</td>
<td>10 Pa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 kPa</td>
<td></td>
</tr>
<tr>
<td>ヘリウム</td>
<td>10 Pa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 kPa</td>
<td></td>
</tr>
</tbody>
</table>

（b）ピラニー真空計の特性が、気体の種類によって異なる理由を述べなさい。

（c）ピラニー真空計の特性が、10 Pa と 10 kPa で異なる理由を述べなさい。

【解】

(a)
<table>
<thead>
<tr>
<th>気体種</th>
<th>隔膜真空計の指示値</th>
<th>ピラニー真空計の指示値</th>
</tr>
</thead>
<tbody>
<tr>
<td>窓素</td>
<td>10 Pa</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>10 kPa</td>
<td>(6)</td>
</tr>
<tr>
<td>空気</td>
<td>10 Pa</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>10 kPa</td>
<td>(6)</td>
</tr>
<tr>
<td>アルゴン</td>
<td>10 Pa</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>10 kPa</td>
<td>(5)</td>
</tr>
<tr>
<td>ヘリウム</td>
<td>10 Pa</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>10 kPa</td>
<td>(8)</td>
</tr>
</tbody>
</table>

(b) ピラニー真空計は、通電加熱した金属細線の気体の熱伝導による温度変化を、電気抵抗の変化とし
て検知することにより圧力を測定する真空計であり、理想的には、分子流領域で使用される。分子
流領域における気体の熱伝導量 Q は、以下の式で表される。

$$Q = \frac{1}{2} \left(\frac{\gamma + 1}{\gamma - 1} \right) \alpha \sqrt{\frac{k}{2\pi mT_z}} \rho (T_1 - T_2)$$

ここで、γ は気体の比熱比、α は熱的適応係数、k はボルツマン定数（J·K⁻¹）、m は気体分子の
質量（kg）、T^* は気体の平均温度（K）、P は圧力（Pa）、T_1 と T_2 はそれぞれ高温面、低温面の
温度（K）である。

従って、気体の種類によって、比熱比 γ、熱的適応係数 α、気体分子の質量 m が異なるため、気
体の種類によって、特性が異なる。

【参考】比熱比 γ はテキスト A-29 ページ表 2-4、熱的適応係数 α はテキスト B-6 ページ表 1 にデー
タが掲載されている。

(c) ピラニー真空計は、理想的には、分子流領域で使用されるが、圧力が 10 kPa くらいまで高くなると、
粘性流の影響が出てくるため、分子流条件が成り立つ 10 Pa とは特性が異なる。粘性流領域におけ
る気体の熱伝導量 Q は、以下の式で表される。

$$Q = -\kappa \frac{dT}{dz}$$

ここで、κ は熱伝導率、dT/dz は平板間方向の温度変化である。

【参考】気体の熱伝導率は、A-21 ページ表 2-3 にデータがある。
II - 2. リークの発生とリーク量

超真空装置に発生したリークに関する次の問に答えなさい。ただし、リークを通じて流入する気体は20℃の空気とし、(i) リーク路は全て分子流領域であると仮定した場合と (ii) リーク路は全て粘性流領域であると仮定した場合について、それぞれ計算しなさい。

(a) 超真空フランジに直径10μm、長さ3mmの円筒状のリーク源ができ、リークした。このときのリーク量を見積りなさい。

(b) リーク源の直径が5μm、20μmのとき、同様の値を求める、リーク源の直径とリーク量の関係を示しなさい。

(c) この装置は実効排気速度100L·s⁻¹のポンプで排気されており、リーク源が発生する前、到達圧力は1×10⁻⁷Paだった。直径10μm、長さ3mmのリーク源ができた後の到達圧力を求めてなさい。

【解】

(a) 20℃の空気に対する、

(i) 円筒管の分子流コンダクタンスの式を用いて、

\[C_m(10) = \frac{121 \text{m·s}^{-1} D^3}{L} = \frac{121 \text{m·s}^{-1} (10 \times 10^{-6} \text{m})^3}{3 \times 10^{-3} \text{m}} = 4.03 \times 10^{-11} \text{m}^3 \cdot \text{s}^{-1} \]

\[Q_m(10) = C_m(10) \Delta p = 4.03 \times 10^{-11} \text{m}^3 \cdot \text{s}^{-1} \cdot 1.01 \times 10^5 \text{Pa} = 4.07 \times 10^{-6} \text{Pa} \cdot \text{m}^3 \cdot \text{s}^{-1} \]
(ii) 粘性流コンダクタンスの式を用いて,

\[
C_v(10) = 1360 \text{ Pa}^{-1} \cdot \text{s}^{-1} \frac{D^4}{L^3} \rho = 1360 \text{ Pa}^{-1} \cdot \text{s}^{-1} \frac{(10 \times 10^{-6} \text{ m})^4}{3 \times 10^{-3} \text{ m}^3} \cdot \frac{1.01 \times 10^5 \text{ Pa}}{2} = 2.29 \times 10^{-10} \text{ m}^3 \cdot \text{s}^{-1}
\]

\[
Q_v(10) = C_v(10) \Delta p = 2.29 \times 10^{-10} \text{ m}^3 \cdot \text{s}^{-1} \cdot 1.01 \times 10^5 \text{ Pa} = 2.31 \times 10^{-5} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}
\]

(b) (a) と同様に,

\[
Q_m(5) = C_m(5) \Delta p = \left(\frac{5}{10} \right)^3 C_m(10) \Delta p = \frac{1}{8} Q_m(10) = 5.09 \times 10^{-7} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}
\]

\[
Q_m(20) = C_m(20) \Delta p = \left(\frac{20}{10} \right)^3 C_m(10) \Delta p = 8Q_m(10) = 3.26 \times 10^{-5} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}
\]

\[
Q_v(5) = C_v(5) \Delta p = \left(\frac{5}{10} \right)^4 C_v(10) \Delta p = \frac{1}{16} Q_v(10) = 1.45 \times 10^{-6} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}
\]

\[
Q_v(20) = C_v(20) \Delta p = \left(\frac{20}{10} \right)^4 C_v(10) \Delta p = 16Q_v(10) = 3.70 \times 10^{-4} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}
\]

(c) リーク前の装置からの気体放出量を \(Q_0 \) とおくと,

\[
Q_0 = S \rho = 0.1 \text{ m}^3 \cdot \text{s}^{-1} \cdot 1.0 \times 10^{-7} \text{ Pa} = 1.0 \times 10^{-8} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}
\]

リーク発生後は、気体放出量が \(Q_0 + Q_x(10) \) となるので、圧力は

\[
p_m = \frac{Q_0 + Q_m(10)}{S} = \frac{1.0 \times 10^{-8} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1} + 4.07 \times 10^{-6} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}}{0.1 \text{ m}^3 \cdot \text{s}^{-1}} = 4.08 \times 10^{-5} \text{ Pa}
\]

\[
p_v = \frac{Q_0 + Q_v(10)}{S} = \frac{1.0 \times 10^{-8} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1} + 2.31 \times 10^{-5} \text{ Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}}{0.1 \text{ m}^3 \cdot \text{s}^{-1}} = 2.31 \times 10^{-4} \text{ Pa}
\]

\(Q_0, S \) が一定であるので、\(Q_x(10) \) による圧力上昇 \(\Delta p_m = 4.07 \times 10^{-6}/0.1 = 4.07 \times 10^{-5} \text{ Pa} \), \(\Delta p_v = 2.31 \times 10^{-5}/0.1 = 2.31 \times 10^{-4} \text{ Pa} \) があるとしてもよい。
II - 3. 熱伝導

問1
図Iに示すように、2枚の平板A、Bが20mm離れて配置されている。平板AとBの温度がそれぞれ0°C、100°Cのとき、次の条件での気体分子による平板間の単位面積当たりの熱伝導量Q[W・m⁻²]を求めよ。ただし、平板間に存在する気体は空気であるとする。また、空気の熱伝導率は温度に依らず一定であるとし、粘性流領域における熱伝導率κは25×10⁻³W・m⁻¹・K⁻¹、分子流領域における自由分子熱伝導率λは1.25W・m⁻²・K⁻¹Pa⁻¹とする。

(a) 平板間の圧力が0.1気圧のとき

(b) 平板間の圧力が1×10⁻³Paのとき

問2
図IIに示すように、平板AとBの中間に薄い平板Cを置いた場合、次の条件での各平板間の熱伝導量を求めよ。

(a) 平板間の圧力が0.1気圧のとき

(b) 平板間の圧力が1×10⁻³Paのとき

【解】

問1

(a) \[p = 0.1 \times 10^5 \text{Pa}, \ 25°C\]における空気の平均自由行程λ[mm]は、

\[
\lambda \approx \frac{6.6}{0.1 \times 10^5} \approx 6.6 \times 10^{-4} \text{mm}
\]

\[d \gg \lambda \]なので、平板AB間の熱伝導Qは、粘性流領域における熱伝導量の式より、

\[
Q = \kappa \frac{T_2 - T_1}{d} = 25 \times 10^{-3} \cdot \frac{373 - 273}{20 \times 10^{-3}} = 125 \text{W・m}^{-2}
\]

となる。

(b) \[p = 1 \times 10^{-3} \text{Pa}, \ 25°C\]における空気の平均自由行程λ[mm]は、

\[
\lambda \approx \frac{6.6}{1 \times 10^{-3}} \approx 6.6 \times 10^3 \text{mm}
\]
d ≪ λ なので、平板 AB 間の熱伝導 Q は、分子流領域における熱伝導量の式より,

\[Q = Ap\Delta T = 1.25 \times 1 \times 10^{-3} \times (373 - 273) = 1.25 \times 10^{-1} \text{W} \cdot \text{m}^{-2} \]

問2 分子流領域では平板 C が平板 A と平板 B から等距離になくても 50°C になる。ただし、テキスト A28 頁 (2-42) 式からは \(T_c = 48°C \) と計算される。この問題では \(A \) を一定としているので、\(Q^* = Ap(T_1 - T_c) = Ap(T_c - T_2) \) から \(T_c = (T_1 + T_2)/2 \) を使えば 50°C となる。

(a) 問1(a) と同様に \(d \gg \lambda \) なので、平板 AC 間の熱伝導量 Q は粘性流領域における熱伝導量の式より,

\[Q = \kappa \frac{T_2 - T_1}{d} = 25 \times 10^{-3} \times \frac{323 - 273}{10 \times 10^{-3}} = 125 \text{W} \cdot \text{m}^{-2} \]

となる。同様に CB 間も 125 W·m⁻²。これは問1(a) 同じ値であり、平板 C を設置することによる熱遮蔽効果はない。

(b) 問1(b) と同様に \(d \ll \lambda \) なので、平板 AC 間の熱伝導量 Q は分子流領域における熱伝導量の式より,

\[Q = Ap\Delta T = 1.25 \times 1 \times 10^{-3} \times (323 - 273) = 6.25 \times 10^{-2} \text{W} \cdot \text{m}^{-2} \]

となる。同様に CB 間も 6.25 × 10⁻² W·m⁻²。これは問1(b) の半分の値であり、平板 C を設置することによる熱遮蔽効果がある。
II - 4. 気体分子運動論

問1
気体の圧力は、「壁面に入射して跳ね返る気体分子が、单位時間に壁面の単位面積あたりに与える力積」として考えることができる。今、一辺の長さ 1m の立方体の真空容器内で、n 個の気体分子が運動しているとする。気体分子の質量が m [kg], 速さが v [m/s] であるとき、真空容器内の圧力を n, m, v を用いて表せ。ただし、気体分子は全分子の 1/6 ずつが各々の面に垂直に衝突するものとする。

問2
温度 T [K] で熱平衡にある気体分子の中で (v, v + dv) の範囲に速さを持つ分子の割合は、以下の分布関数

\[f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT} \right)^{\frac{3}{2}} v^2 \exp \left(-\frac{mv^2}{2kT} \right) \]

を用いて f(v)dv で与えられる。ここで、m [kg]: 気体分子の質量, k: ボルツマン定数 (1.38×10^{-23} JK^{-1}) である。今、簡略化のために速さ範囲 \(v_1 \sim v_2 \) にある分子の割合を \(f((v_1 + v_2)/2) \times (v_2 - v_1) \) とし、この範囲にある分子の速さは全て \((v_1 + v_2)/2 \) であると仮定する（下図）。このとき、次の (a), (b) における各速さ範囲内にある分子数、及びその分子が単位時間に各壁面に与える力積を計算し、表の空欄を埋める。ただし、気体分子密度 n は \(1 \times 10^{13} \) 個・m^{-3}, 気体の温度 T を 25°C とする。

(a) 気体が水素（分子量：2.0158）の場合

<table>
<thead>
<tr>
<th>(v_1)</th>
<th>0 ～ 500</th>
<th>500 ～ 1000</th>
<th>1000 ～ 1500</th>
<th>1500 ～ 2000</th>
<th>2000 ～ 2500</th>
<th>2500 ～ 3000</th>
<th>3000 ～ 3500</th>
<th>3500 ～ 4000</th>
<th>4000 ～ 4500</th>
<th>4500 ～ 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>分子数</td>
<td></td>
</tr>
</tbody>
</table>

(b) 気体が窒素（分子量：28.0134）の場合

<table>
<thead>
<tr>
<th>(v_1)</th>
<th>0 ～ 150</th>
<th>150 ～ 300</th>
<th>300 ～ 450</th>
<th>450 ～ 600</th>
<th>600 ～ 750</th>
<th>750 ～ 900</th>
<th>900 ～ 1050</th>
<th>1050 ～ 1200</th>
<th>1200 ～ 1350</th>
<th>1350 ～ 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>分子数</td>
<td></td>
</tr>
</tbody>
</table>

問3
各速さ範囲における力積の和から上の (a), (b) における真空容器内の圧力を求めよ。またその値を、気体の状態方程式から求めた圧力と比較せよ。
【解】

問1

1秒間に各壁面（1m²）に衝突する気体分子の数：\(\frac{1}{6}nv \)

1個の分子が1回の衝突で壁に与える力積：\(2nv \)。

従って、真空容器内の圧力（気体分子が単位時間に単位面積に与える力積）は\(\frac{1}{6}nv \times 2nv = \frac{1}{3}nmv^2 \)

問2

与えられた仮定のもとでは、各速さ範囲（\(v_1 \sim v_2 \)）にある分子の数 \(N \) とその分子が壁に与える力積 \(I \)

\[
N = n \times \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT} \right)^\frac{3}{2} \bar{v}^2 \exp \left(-\frac{mv^2}{2kT} \right) \times (v_2 - v_1) \\
I = \frac{1}{3}Nmv^2
\]

で得られる。

(a) 水素分子の質量 \(m_{H_2} = 2.0158 \times 10^{-3} / 6.022 \times 10^{23} \sim 3.35 \times 10^{-27} \) kg, 分子密度 \(n = 1 \times 10^{13} \) m⁻³ , 温度 \(T = 298 \) K を (1) 式と (2) 式に代入すると、以下の表が得られる。

<table>
<thead>
<tr>
<th>(v_1 \sim v_2)</th>
<th>0 ～</th>
<th>500 ～</th>
<th>1000 ～</th>
<th>1500 ～</th>
<th>2000 ～</th>
<th>2500 ～</th>
<th>3000 ～</th>
<th>3500 ～</th>
<th>4000 ～</th>
<th>4500 ～</th>
<th>5000 ～</th>
</tr>
</thead>
<tbody>
<tr>
<td>分子数 (\frac{F_1 + F_2}{2})</td>
<td>1.79×10¹¹</td>
<td>1.31×10¹²</td>
<td>2.42×10¹²</td>
<td>2.58×10¹²</td>
<td>1.89×10¹²</td>
<td>1.02×10¹²</td>
<td>4.20×10¹¹</td>
<td>1.35×10¹¹</td>
<td>3.40×10¹⁰</td>
<td>6.80×10⁹</td>
<td></td>
</tr>
<tr>
<td>体積当りの分子数</td>
<td>1.24×10⁻¹¹</td>
<td>8.22×10⁻¹⁰</td>
<td>4.23×10⁻⁹</td>
<td>8.82×10⁻⁹</td>
<td>1.07×10⁻⁸</td>
<td>6.61×10⁻⁹</td>
<td>4.95×10⁻⁹</td>
<td>2.11×10⁻⁹</td>
<td>6.85×10⁻¹⁰</td>
<td>1.71×10⁻¹⁰</td>
<td></td>
</tr>
</tbody>
</table>

(b) 窒素分子の質量 \(m_{N_2} = 28.0134 \times 10^{-3} / 6.022 \times 10^{23} \sim 4.65 \times 10^{-26} \) kg, 分子密度 \(n = 1 \times 10^{13} \) m⁻³ , 温度 \(T = 298 \) K を (1) 式と (2) 式に代入すると、以下の表が得られる。

<table>
<thead>
<tr>
<th>(v_1 \sim v_2)</th>
<th>0 ～</th>
<th>300 ～</th>
<th>600 ～</th>
<th>900 ～</th>
<th>1200 ～</th>
<th>1500 ～</th>
<th>1800 ～</th>
<th>2100 ～</th>
<th>2400 ～</th>
<th>2700 ～</th>
<th>3000 ～</th>
</tr>
</thead>
<tbody>
<tr>
<td>分子数 (\frac{F_1 + F_2}{2})</td>
<td>2.48×10¹¹</td>
<td>1.73×10¹²</td>
<td>2.89×10¹²</td>
<td>2.64×10¹²</td>
<td>1.58×10¹¹</td>
<td>6.60×10¹⁰</td>
<td>2.00×10¹⁰</td>
<td>4.49×10⁹</td>
<td>7.52×10⁸</td>
<td>9.51×10⁷</td>
<td></td>
</tr>
<tr>
<td>体積当りの分子数</td>
<td>2.16×10⁻¹¹</td>
<td>1.36×10⁻¹⁰</td>
<td>6.30×10⁻¹⁰</td>
<td>1.13×10⁻⁸</td>
<td>1.11×10⁻⁸</td>
<td>6.96×10⁻⁹</td>
<td>2.95×10⁻⁹</td>
<td>8.80×10⁻¹⁰</td>
<td>1.90×10⁻¹⁰</td>
<td>2.99×10⁻¹¹</td>
<td></td>
</tr>
</tbody>
</table>

問3

(a) の力積から求めた圧力 : \(4.11 \times 10^{-8} \) Pa

(b) の力積から求めた圧力 : \(4.11 \times 10^{-8} \) Pa

気体の状態方程式 \(p = nkT \) から求めた圧力 : \(4.11 \times 10^{-8} \) Pa
III - 1. 吸着ガスと排気

内表面積 1.5 m² の真空容器が実効排気速度 100 L·s⁻¹ で排気されており、25°Cにおける到達圧力は 1 × 10⁻⁵ Pa であった。容器内の気体分子はすべて H₂O とし、容器内表面では吸着確率 1 で吸着平衡が成立しているとする。

(a) 単位時間あたりにポンプに排気される気体分子数は壁から脱離する気体分子数の何％に当たるか？

(b) その後、容器全体を 200°C に昇温したところ、圧力が 1 × 10⁻³ Pa になった。このとき、以下の 4 つの量は 25°C のときに比べて何倍になったか？ただし、実効排気速度は温度によらず一定とする。

(i) 平均分子速度

(ii) 単位時間あたりに容器内壁を叩く気体分子数

(iii) 単位時間あたりに排気される気体分子数

(iv) 平均滞在時間

\[\tau = \tau_0 \exp \left(\frac{E_{\text{des}}}{RT} \right) \]

において、\(\tau_0 = 1 \times 10^{-13} \) s、\(E_{\text{des}} = 100 \) kJ·mol⁻¹ とする。

【解】

(a) 単位時間あたりに排気される気体分子数は、

\[\dot{N}_{\text{pump}} = \frac{Q_{\text{pump}}}{kT} = \frac{pS}{kT} = \frac{1 \times 10^{-5} \text{Pa} \times 0.1 \text{m}^3 \cdot \text{s}^{-1}}{1.381 \times 10^{-23} \text{J} \cdot \text{mol}^{-1} \cdot \text{K} \times 298 \text{K}} = 2.43 \times 10^{14} \text{個} \cdot \text{s}^{-1} \]

単位時間あたり脱離する気体分子数は、吸着平衡が成立している場合、吸着確率を \(c \) とすると、\(\Gamma_{\text{des}} = c \Gamma_{\text{imp}} \) であるから、

\[\dot{N}_{\text{des}} = \Gamma_{\text{des}} A = c \Gamma_{\text{imp}} A = \frac{cpA}{\sqrt{2\pi mkT}} \]

\[= \frac{1 \times 1 \times 10^{-5} \text{Pa} \times 1.5 \text{m}^2}{\sqrt{2\pi} \cdot \frac{18 \times 10^{-3}}{6.022 \times 10^{23}} \text{kg} \cdot \text{mol}^{-1} \times 1.381 \times 10^{-23} \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times 298 \text{K}} = 5.40 \times 10^{17} \text{個} \cdot \text{s}^{-1} \]

従って、

\[\frac{\dot{N}_{\text{pump}}}{\dot{N}_{\text{des}}} = \frac{2.43 \times 10^{14}}{5.40 \times 10^{17}} = 0.045 \% \]

※\(\dot{N}_{\text{pump}} \ll \dot{N}_{\text{des}} = \dot{N}_{\text{ads}} \) なので、ほぼ吸着平衡が成立しているってよい。

【別解】この問題では \(c=1 \) なので、理想排気速度が 100 L·s⁻¹ となる仮想ポンプ開口 \(a \) が容器全体の内表面積 \(A = 1.5 \text{m}^2 \) に占める割合から求めてよい。\(\frac{1}{4} \dot{V}a = S \) と \(\dot{V} = 592 \text{m} \cdot \text{s}^{-1} \) から、\(a = 6.76 \times 10^{-4} \text{m}^2 \) なので

\[\frac{\dot{N}_{\text{pump}}}{\dot{N}_{\text{des}}} = \frac{\dot{N}_{\text{pump}}}{\dot{N}_{\text{imp}}} = \frac{a}{A} = \frac{6.76 \times 10^{-4}}{1.5} = 0.045 \% \]
(b) (i) 平均分子速度は、
\[\bar{v} = \sqrt{\frac{8kT}{\pi m}} \] から \(T \) の 0.5 倍に比例し、すなわち \(\sqrt{\frac{473}{298}} = 1.26 \) 倍

(ii) 単位時間あたりに容器内壁を叩く気体分子数は、
\[f_{imp}A = \frac{pA}{\sqrt{2\pi mkT}} \] から \(p \) に比例し、\(T \) の -0.5 倍に比例、すなわち
\[1 \times 10^{-3} \sqrt{\frac{298}{473}} = 79.4 \] 倍

*(i) と (ii) の効果より、確かに圧力が 100 倍になっている。

(iii) 単位時間あたりに排気される気体分子数は、
\[\frac{Q_{pump}}{kT} = \frac{pS}{kT} \] から \(p \) に比例し、\(T \) の -1 倍に比例、すなわち
\[1 \times 10^{-3} \cdot \frac{298}{473} = 63.0 \] 倍

(iv) 平均滞在時間は、
\[\tau = \tau_0 \exp \left(\frac{E_{des}}{RT} \right) \] において、\(\tau_0 = 1 \times 10^{-13} \) s, \(E_{des} = 100 \) kJ·mol\(^{-1} \)として、
\[\frac{\tau(473K)}{\tau(298K)} = \frac{1}{1 \times 10^{-13}} \cdot \frac{\exp \left(\frac{100 \times 1000}{8.314 \cdot 473} \right)}{\exp \left(\frac{100 \times 1000}{8.314 \cdot 298} \right)} = \frac{1.11 \times 10^{-2}}{3.38 \times 10^4} = 3.28 \times 10^{-7} \text{倍} \]
III - 2. ポンプの排気速度測定：コンダクタンス変調法

下の図のようオーリフィス付きのゲート弁が備え付けられた真空装置がある。ゲート弁を開じた状態（右図）では、直径10 mmのオーリフィスを介して真空排気され、ゲート弁を開けた状態（左図）では、ターボ分子ポンプでそのまま真空排気できる。この装置を用いて、ターボ分子ポンプの排気速度を以下の手順で測定した。設問に答えなさい。但し、真空装置の到達圧力は、試験圧力に比べ、無視できるくらい低いものとし、気体の温度は23℃とする。

（a）ゲート弁を開けた状態で、可変リークバルブを用いて、流量Qの気体を導入した。真空容器内の圧力をp₀、ターボ分子ポンプの排気速度をSとすると、どのような関係式が成り立つか。

（b）可変リークバルブの弁開度をそのままにして、ゲート弁を閉じた。すると、真空容器内の圧力は上昇し、ptで平衡した。オリフィスを介して排気される実効排気速度をScとすると、流量Q、圧力pt、実効排気速度Scの間には、どのような関係式が成り立つか。

（c）ターボ分子ポンプの排気速度S、オリフィスを介して排気される実効排気速度Sc、形状から計算されるオリフィスのコンダクタンスCの間には、どのような関係式が成り立つか。

（d）（a）～（c）で得られた関係式を用いて、ターボ分子ポンプの排気速度Sを、p₀とptを使って求める式を導出せよ。

（e）空気ガスを導入した時、ゲート弁を開けた時の圧力p₀が2.0×10⁻⁵ Pa、閉めた時の圧力ptが1.1×10⁻³ Paであった。ターボ分子ポンプの排気速度はいくらか。

（f）この手法は、コンダクタンス変調法と呼ばれる測定方法である。本手法の長所と限界を述べよ。

【解】

（a）圧力p₀、排気速度S、流量Qの関係より、Q = Sp₀

（b）（a）と同様に、Q = Scpt

（c）コンダクタンスCを介した排気速度Sのポンプの実効排気速度Scは、C、Sの調和平均の2倍で与えられるので、

\[\frac{1}{S_c} = \frac{1}{C} + \frac{1}{S} \]
(d) (a)〜(c) の関係式を連立させ、S_c と Q を消去して,

$$S = C \left(\frac{p_c}{p_o} - 1 \right)$$

(e) 23°Cの窒素に対する、直径10 mmのオリフィスのコンダクタンス C は、

$$C = \frac{\bar{v}A}{4} = \sqrt{\frac{RT}{2\pi M} \pi (d/2)^2} = \sqrt{\frac{8.314 \cdot 296.2}{2\pi \cdot 0.02801} \pi (0.01/2)^2} = 9.29 \times 10^{-3} \text{m}^3\cdot\text{s}^{-1}$$

であるから、(d) の結果より

$$S = C \left(\frac{p_c}{p_o} - 1 \right) = 9.29 \times 10^{-3} \left(\frac{1.1 \times 10^{-3}}{2.0 \times 10^{-5}} - 1 \right) = 0.5 \text{m}^3\cdot\text{s}^{-1}$$

(f)

長所：(d) の式からバルブ閉閉時の圧力比を測定すればよいことになるので、真空計の絶対校正が不要となり、また比感度係数もキャンセルされるため気体の種類によらず排気速度を測定できる。

限界：オリフィスのコンダクタンスが圧力によらない条件、すなわち分子流条件を満足する圧力領域でないと測定できない。真空容器内の圧力分布を考慮していないので、カタログ値と異なる値を示す場合がある。
III-3. 気体放出速度

放出ガスが 1×10^{-8} Pa·m³·s⁻¹程度と予想される試料がある。この試料の放出ガス速度を測定する装置を検討する。装置は図に示した円筒チャンバー1、2がオリフィスで接続されている構造とする。チャンバー材料として、放出ガス速度（単位 Pa·m·s⁻¹）がどの程度のものを用いないければならないか考えよう。

(a) チャンバー材料の放出ガス速度を仮に $q = 5 \times 10^{-7}$ Pa·ms⁻¹とするとき、チャンバー1の圧力 p_1、チャンバー2の圧力 p_2を求め、装置のバックグラウンドとなる放出ガス Q_{BG}（単位 Pa·m³·s⁻¹）を求めよ。さらに今回の測定に適する装置を述べよ。温度は20℃で均一とし、気体の分子量は29とする。また、ポンプの排気速度300L·s⁻¹もその気体に対してのものとする。

(b) 装置そのもののガス放出速度を測定したガスの10分の1以下にしたい、チャンバー材料の単位面積当たりの放出ガス速度を何 Pa·m³·s⁻¹以下にしなければならないか求めよ。チャンバー材料から放出されるガスが試料に吸着し、試料からの放出ガス速度に影響することはないとする。

【解】

(a) オリフィスの面積 a およびチャンバー1、2の表面積 A はそれぞれ、

\[
a = \pi(10 \times 0.001/2)^2 = 7.854 \times 10^{-5} \text{m}^2
\]

\[
A = \pi \times 0.1 \times 0.2 + 2 \cdot \pi(0.05)^2 - a = 7.846 \times 10^{-2} \text{m}^2
\]

チャンバー1、2からのガス放出量 Q_1、Q_2 は表面積が等しいので等しく、

\[
Q_1 = Q_2 = qA = 5 \times 10^{-7} \times 7.846 \times 10^{-2} = 3.923 \times 10^{-8} \text{Pa·m·s⁻¹} = Q
\]

明らかに、オリフィスを通過する流量 Q_{BG} は Q である。この値は、測定したい試料のガス放出量よりも大きいので、不適当と考えられる。

他の諸量も計算しておく。まずオリフィスの分子流コンダクタンス C は、

\[
C = \frac{1}{4} \bar{v}a = \frac{a}{4} \cdot 4.602 \sqrt{\frac{T}{M}} = \frac{7.854 \times 10^{-5} \cdot 4.602 \sqrt{293.15/0.029}}{4} = 9.085 \times 10^{-3} \text{m}^3\text{·s}^{-1}
\]

チャンバー2については、$Q_1 + Q_2 = 2Q$ の流量があるから、

\[
2Q = Sp_2 \quad \therefore \quad p_2 = \frac{2Q}{S} = \frac{2 \cdot 3.923 \times 10^{-8}}{0.3} = 2.615 \times 10^{-7} \text{Pa}
\]

チャンバー1については、

\[
Q = C(p_1 - p_2) \quad \therefore \quad p_1 = \frac{Q}{C} + p_2 = \frac{3.923 \times 10^{-8}}{9.085 \times 10^{-3}} + 2.495 \times 10^{-7} = 4.568 \times 10^{-6} \text{Pa}
\]
(b) 試料からのガス放出量の $1/10$ で $1 \times 10^{-9} \text{Pa} \cdot \text{m}^3 \cdot \text{s}^{-1}$ となる放出ガス速度 q の条件は、

$$1.0 \times 10^{-9} \geq qA \quad \therefore q \leq \frac{1.0 \times 10^{-9}}{7.846 \times 10^{-2}} = 1.274 \times 10^{-8} \text{Pa} \cdot \text{m}^3 \cdot \text{s}^{-1} \cdot \text{m}^{-2}$$

III - 4. 電離真空計に関する問題

窒素に対する感度係数 $S = 0.15 \text{Pa}^{-1}$ の電離真空計に対して、以下の間に答えよ。容器内には窒素ガスのみが存在し、温度は 300 K とする。また生成されたイオンのコレクタへの捕集効率 β は 100 % とする。

(a) 電子電流 I_e、イオン電流 I_i、圧力 p、感度係数 S の間の関係を示せ。

(b) 圧力が 0.1 Pa のとき、電子 1 個あたり何個の窒素ガスがイオン化されるか。1 × 10^{-3} Pa では何個か。

(c) この真空計で、陰極から出た電子がグリッドに捕まるまでに走る距離 L を 4 cm とする。電子の窒素に対する電離断面積 σ_i は何 cm^2 か。

発展 電子−窒素の衝突断面積 σ_e は、窒素−窒素の衝突断面積 σ と $\sigma_e = \sigma/4$ の関係にある。窒素の 1 Pa 300 K における平均自由行程を 6.0 mm として σ を求め、次いで σ_e を得て、窒素分子に衝突した電子がその分子を電離させる確率を導け。

【解】

(a) 「真空計測」の 3.3.1 より

$$I_i = SpI_e$$

(b) 求める値は $\frac{\beta^{-1}I_i}{I_e}$ だから、0.1 Pa では 1.5×10^{-2} 個、1 × 10^{-3} Pa では 1.5×10^{-4} 個。

(c) まず電子 1 個あたりに生成されるイオン数を、衝突過程から考える。考え方は気体の平均自由行程と同じで、$\sigma_i \times L$ の体積の中にある気体分子数を数えれば良い。なお電子の速度は気体分子の速度より充分速いので、対象分子が静止している場合の式を用いる。気体の密度を n として、

$$\frac{\beta^{-1}I_i}{I_e} = n\sigma_iL = \frac{p}{kT}\sigma_iL$$

であるから、

$$\sigma_i = \frac{\beta^{-1}I_i 1 kT}{p L} = \frac{kT}{\beta L}$$

となる。数値を代入すると、$\sigma_i = 1.55 \times 10^{-20} \text{m}^2 = 1.55 \times 10^{-16} \text{cm}^2$ を得る。

なお、電離によって発生した電子の影響は、(b) より小さいと考えてよい。

(d) ガスの平均自由行程 λ は

$$\lambda = \frac{kT}{\sqrt{2\sigma p}}$$
なので、

\[\sigma = \frac{kT}{\sqrt{2\lambda p}} \]

である。数値を代入すると \(\sigma = 4.88 \times 10^{-19} \text{m}^2 = 4.88 \times 10^{-15} \text{cm}^2 \)、よって \(\sigma_e = 1.22 \times 10^{-15} \text{cm}^2 \)。よって電離確率は \(\sigma_i / \sigma_e = 0.127 \)。